翻訳と辞書
Words near each other
・ De re publica
・ De rebus bellicis
・ De rebus Hispaniae
・ De Redin towers
・ De Regt
・ De Reiger, Nijetrijne
・ De remediis utriusque fortunae
・ De Rentmeester, Menaldum
・ De Renzie Brett
・ De rerum natura
・ De retour à la source
・ De revolutie!
・ De revolutionibus orbium coelestium
・ De Rham cohomology
・ De Rham curve
De Rham invariant
・ De Rham–Weil theorem
・ De Riancey
・ De Ribera
・ De Ridder
・ De Rietschoof
・ De Rietvink, Nijetrijne
・ De RigueurMortis
・ De Rijp
・ De Rips
・ De Rivaz engine
・ De River
・ De Robeck
・ De Rode Ridder
・ De rode zwaan


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

De Rham invariant : ウィキペディア英語版
De Rham invariant
In geometric topology, the de Rham invariant is a mod 2 invariant of a (4''k''+1)-dimensional manifold, that is, an element of \mathbf/2 – either 0 or 1. It can be thought of as the simply-connected ''symmetric'' L-group L^, and thus analogous to the other invariants from L-theory: the signature, a 4''k''-dimensional invariant (either symmetric or quadratic, L^ \cong L_), and the Kervaire invariant, a (4''k''+2)-dimensional ''quadratic'' invariant L_.
It is named for Swiss mathematician Georges de Rham, and used in surgery theory.〔Morgan & Sullivan, ''The transversality characteristic class and linking cycles in surgery theory,'' 1974〕〔John W. Morgan, ''(A product formula for surgery obstructions ),'' 1978〕
== Definition ==
The de Rham invariant of a (4''k''+1)-dimensional manifold can be defined in various equivalent ways:
* the rank of the 2-torsion in H_(M), as an integer mod 2;
* the Stiefel–Whitney number w_2w_;
* the (squared) Wu number, v_Sq^1v_, where v_ \in H^(M;Z_2) is the Wu class of the normal bundle of M and Sq^1 is the Steenrod square ; formally, as with all characteristic numbers, this is evaluated on the fundamental class: (v_Sq^1v_,());
* in terms of a semicharacteristic.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「De Rham invariant」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.